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Abstract

This paper applies a two-phase methodology to cluster 366 records of the wire bond machines for a Taiwanese IC packaging foundry,
where six attributes of each machine are chosen to cluster. The purpose of clustering in this paper is to help the foundry more effectively
assign a family of machines to orders that appear in various forms such as emergent or quality-demanding and are highly dynamic in
nature. Given the clusters, we use the technique of parallel coordinates to plot each attribute’s centers in clusters so that the foundry can
take advantage of visualization to determine what machines can be assigned to orders. To plot these centers, we map the input values into
the range of �1 and +1 so that proper parallel coordinates can be used. Originating from the graphs, we also compare the same machines
appearing in clusters that are produced by applying different clustering methods. These identical machines form the important basis to
support the clustering results for the management of machines.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Packaging is one of steps in the integrated circuits (ICs)
manufacturing that can be broken into five steps in order
of process: (1) starting substrate, (2) wafer fabrication,
(3) wafer sort/test, (4) packaging, and (5) mark/final test.
The first three steps are commonly referred to as front-
end processing, while the last two are back-end. Upon
completing the front-end processing, packaging is per-
formed by processing the finished wafer whose surface con-
tains many individual die, also called chips. General
purposes of packaging include protecting ICs, making
ICs easier to handle, and connecting ICs to the circuit out-
side. A packaging process starts with cutting wafers into
individual chips by a wafer saw. Next, the chips are put
onto the leadframe using a die bonder. Then, a wire bonder
connects the electrical paths on the chip with the contact
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pads of the leadframe. After wire bonding, the chips are
encapsulated using an injection molding process. Follow-
ing the molding, the leads are tinned in a plating process,
and the chips are marked. Finally, the leads are trimmed
from the leadframe, formed into proper shape and the chip
is cut out from the leadframe. The packaging process
described above is shown in Fig. 1.

Continuing rising costs of wafer fabrication facility and
labor have made popular the packaging foundries that ben-
efit fabless IC design companies on the one hand, and
wafer fabrication and foundry companies on the other.
Despite the increasing popularity worldwide, an IC pack-
aging foundry is exposed to the following challenges.

• Production scheduling is complicated because a wide
variety of products are manufactured.

• Machine management is extremely challenging due to
the particular fact that the wire bond machines not only
outnumber other types of machines but outmatch the
processing time in a packaging process.

mailto:yanghh@ncit.edu.tw


Die Sawing Die Bonding

Marking Inspection Trim/Form Plating 

Molding Wire Bonding

Fig. 1. An IC packaging process.
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• Medium- and long-range forecast and shop floor control
are difficult because of dynamic arrival of orders.

• Efforts to separate an incoming order into numerous
smaller orders are required to deal with the situation
where the order may contain a wide variety of chips to
be packaged.

• Setup time of machines varies greatly; some take up to
16 h, while others need only 10–30 min.

Among the preceding challenges, management of the
wire bond machines plays the most decisive role in improv-
ing a packaging foundry’s productivity owing to their dom-
inant quantities and processing time. In most cases, the
foundry manages the machines simply by their serial num-
bers that are generally related to the year they were pur-
chased, rarely by attributes to the management’s
advantage. However, assigning machines to incoming
orders not only involves general temporal factors but also
has to consider particular requirements such as whether
orders are emergent or demand vast capacity, high quality.
These requirements can not be cost-effectively met without
clustering machines in a proper way.

Clustering is one of techniques that partition objects
into clusters so that objects within a cluster have similar
characteristics (or are close to each other), while objects
in different clusters are most distinct from one another.
The result of clustering depends heavily on the measure
of the similarity between two objects. For some applica-
tions, however, it may be convenient or intuitive to mea-
sure the dissimilarity of objects instead of defining a
similarity measure. The most common way to calculate
the dissimilarity between two objects is to compute their
Euclidean distance. A number of algorithms have been
developed for clustering objects based on their similarity
(or dissimilarity). The k-means algorithm (MacQueen,
1967) is a popular clustering technique that partitions a
set of n objects into k clusters where cluster similarity is
measured by the average value of the objects in the cluster.
To use the k-means algorithm, the desired number of clus-
ters k must be given as an input. We refer interested readers
to Jain, Murty, and Flynn (1999) for a recent survey on
clustering, and Grabmeier and Rudolph (2002); Jain and
Dubes (1988) for techniques of cluster algorithms.

To represent relationships between data and then learn
these relationships from the data, neural networks are a
useful tool and often used to develop models that predict
or classify an output as a response to a set of inputs to
the trained network. One popular variant of neural net-
works is Kohonen’s self-organizing map (SOM) (Kohonen,
1985; Kohonen, 1995) that projects high-dimensional input
data onto a low-dimensional (usually one- or two-dimen-
sional) array. This nonlinear projection produces a struc-
tured ordering of the input vectors that maps similar
input objects to neighboring nodes in the two-dimensional
map, which helps to understand the complex data structure
or identify ‘‘clusters’’ of data in the high-dimensional
space. Recall that the k-means algorithm, in spite of its eas-
iness to implement and efficiency, requires an initial k that
may be unavailable a priori and affect the final result. To
remedy this drawback, researchers have developed some
two-phase (or two-stage) methods (Balakrishnan, Cooper,
Jacob, & Lewis, 1996; Jiang, Tseng, & Su, 2001; Kuo,
Ho, & Hu, 2002; Yang & Liu, in press) that use available
algorithms in the first phase to find k. The SOM algorithm
has increasingly gained its popularity to be one of such
algorithms used in the first phase.

Because of the importance of managing the wire bond
machines, the objective of this paper is to apply clustering
techniques to them so that a family of machines can be
assigned to orders in the foundry’s best interest. To cluster
machines, we use the two-phase methodology proposed by
Yang, Liu, and Su (submitted for publication) where SOM
was used in the first phase to find k. Given this k, the k-
means algorithm and minimum spanning tree (MST)-based
clustering algorithm were used to find clusters in the second
phase. We refer readers to Xu, Olman, and Xu (2001); Xu,
Olman, and Xu (2002) for more details about using the
MST-based clustering. Clustering naturally raises and
needs to answer the questions of whether and how the
results are good. Yang et al. (submitted for publication)
compared and discussed the clustering results, but elabo-
rated little in the context of managing machines related
to the orders. Extending from the work of Yang et al. (sub-
mitted for publication), in this paper we focus more on
management aspects than on comparing results. To under-
stand what the clustering results reveal and may help, we
use the parallel coordinate visualization (Berry & Linoff,
2004) that shows each attribute’s centers in the clusters.
Before plotting using parallel coordinate, input data are
mapped into the range between +1 and �1. In view of clus-
tering machines to improve management, Yang and Liu (in
press) used a similar two-phase clustering methodology to
observe how the clusters would be affected after removing
outliers. However, Yang and Liu (in press) did not consider
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Fig. 2. Kohonen’s SOM network.
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normalizing data whose real-life values may vary signifi-
cantly, nor did they apply the MST-based clustering that
enjoys advantages over the k-means algorithm with respect
to irregular geometric shape of data. The rest of the paper
is organized as follows. In Section 2, we briefly describe the
k-means algorithm, SOM and MST. In Section 3, we
describe the data and discuss how the visualization may
help the management of machines given clustering results.
We present conclusions in Section 4.

2. Background

In this section, we will introduce basics of the k-means
algorithm, SOM and MST. We begin with the k-means
algorithm.

2.1. k-means algorithm

The k-means algorithm finds a set of k clusters so that
the total distance, usually Euclidean, is minimized between
the input objects xi and its closest cluster cj. The outline of
the k-means algorithm is given as follows:

1. Choose k centroids arbitrarily for each cluster cj,
j 2 [1,k].

2. Assign each object to the cluster whose centroid is clos-
est to the object.

3. Compute the centroid of each cluster cj, j 2 [1,k].
4. Repeat Steps 2 and 3 until no objects change between

clusters.

Major attractiveness of the k-means algorithm is its
computational efficiency that requires polynomial time of
O(tkn), where t is the number of iterations, k is the number
of clusters, and n is the number of objects. Because n dom-
inates t and k in most practical applications, the k-means
algorithm requires approximate O(n) time. However, draw-
backs of the k-means algorithm include: (1) it often con-
verges to a local optimum, (2) it favors clusters with
convex shapes, and (3) it is sensitive to the presence of out-
liers and initial solution.

2.2. SOM algorithm

A typical SOM network contains two layers, i.e., the
input layer and output (Kohonen) layer, where the input
layer is fully connected to a two-dimensional Kohonen
layer (Fig. 2). Assume there are N input vectors, each vec-
tor contains K attributes, and the size of the Kohonen layer
is M that is usually a square matrix. As shown in Fig. 2,
input layer contains the set of input vector xi = (xi1,x-

i2, . . .,xiK), i 2 [1,N], and corresponding to this xi in the
output layer is the weight vector wm = (wm1,wm2, . . .,wmK),
m 2 [1, M]. During the training process, each input vector is
presented to the network through the processing nodes in
the input layer. As the training process proceeds, the values
of the weight vector are adjusted according to the topolog-
ical relations in the input vector. The node with the mini-
mum weight vector is the winner and weight values of
this winner’s neighboring nodes are adjusted to be closer
to the value of the input vector. Euclidean distance is the
most popular way to measure the distance between input
vectors and weight vectors.

Let discrete time t (epoch) be an index such that xi(t),
t = 0,1, . . ., is presented to network at time t, and wm(t) is
the weight vector computed at time t. The SOM algorithm
works as follows:

1. Present input vector xi(t) randomly.
2. Compute the Euclidean distance for each node in the

output layer.

kxiðtÞ � wmðtÞk; m 2 ½1;M �:

3. Find the winner with the minimum distance.

kxiðtÞ � wcðtÞk ¼ min kxiðtÞ � wmðtÞk; m 2 ½1;M �:
4. Update weight vectors of the neighboring nodes of the

winner.

wmðt þ 1Þ ¼ wmðtÞ þ aðtÞhðtÞ xiðtÞ � wmðtÞ½ �:

In Step 4, a(t) is the learning rate that controls the over-
all magnitude of the correction to the weight vectors and is
reduced monotonically during the training process; h(t) is
the neighborhood function that controls the extent to
which wm(t) is allowed to adjust in response to an input
most closely resembling ww(t).

2.3. Minimum spanning tree

Given a graph G, a spanning tree T of this graph G is a
connected acyclic subgraph that connects all nodes. A min-
imum spanning tree is the spanning tree whose total edge
length is the smallest. Zahn (1971) proposed a clustering
algorithm that initially constructs the MST of the given
data, and then deletes k � 1 edges in ascending order of
edge lengths to generate k trees, each of which corresponds
to a cluster. The intuition behind this method is that the
longest edges separate clusters, while the shortest edges
connect close data points within clusters.



Fig. 3. The clustering result of raw data by SOM.

Table 2
Number of records in each cluster by MST and k-means

Cluster Method

Raw data z-score
normalization

min–max
normalization

MST k-means MST k-means MST k-means

1 10 31 360 11 360 7
2 1 1 1 147 1 26
3 1 110 1 11 1 35
4 1 11 1 54 1 79
5 1 61 1 1 1 138
6 3 151 1 88 1 80
7 349 1 1 54 1 1
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3. The data and results

We collect 366 records of data from a Taiwanese foun-
dry, and choose six attributes as follows: (1) Prod_Qty,
(2) Prod_Time, (3) Small_Stops, (4) Standby, (5) Change-
over_Time, and (6) Breakdowns. These attributes are cho-
sen after consulting with the foundry’s staff. For brevity,
we omit the detailed explanations. For later use, we pro-
vide each attribute’s average of 366 records as follows:
Prod_Qty = 20439.89, Prod_Time = 648.92, Small_Stops =
280.54, Standby = 123.21, Changeover_Time = 30.12,
Breakdowns = 46.43. As shown in Table 1, the absolute
value of Prod_Qty differs largely from that of Standby or
Breakdowns. Therefore, we use two popular methods to
normalize data, namely, min–max normalization (min–
max for short) and z-score normalization (z-score for
short). Given a vector V = (v1,v2, . . .,vn), the min–max nor-
malization of vj is as follows:

min – maxðvjÞ ¼
vj �min

max – min
;

where max (or min) denotes the maximum (or minimum)
of V.

Similarly, the z-score normalization is

z-scoreðvjÞ ¼
vj � �V

rV
;

where �V is the mean of V, and rV is the standard deviation
of V.

With data normalization in place, we begin our two-
phase methodology. According to Yang et al. (submitted
for publication), the result of using the SOM to cluster data
is shown in Fig. 3, where the size of Kohonen layer is
19 · 19, neighborhood function h is eight, learning rate a
is 0.1, and learning epoch is 70. From Fig. 3, it is deter-
mined that the number of cluster is seven. Given this num-
ber, we can proceed to the second phase.

Because we use two other types of data normalizations,
there are six combinations of clustering results. Table 2
shows the number of records in each cluster of each com-
bination. Apparently, as pointed out by Yang et al. (sub-
mitted for publication), the k-means algorithm produces
more even clusters after data normalization. To take
advantage of visualization, we map the input values of
attributes into the range between �1 and +1 and use par-
allel coordinates to plot centers of seven clusters identified.
Table 1
Examples of raw data

Machine Attribute

Prod_Qty Prod_Time Small_Stops

5351WB 38522 450.22 85.15
5352WB 38467 634.78 88.61
5354WB 32356 398.98 31.69
5353WB 40855 432.61 35.14
5355WB 32453 409.7 31.49
Æ Æ Æ Æ
The center of a cluster is the most average member of this
cluster. Among the six combinations, take Table 3 that uses
k-means on raw data for example. Given Table 3, we use
Table 4 to show the mapped values and then plot centers
of clusters in Fig. 4. In addition to Fig. 4, we present the
centers of clusters of the other two combinations in Figs.
5 and 6. Note that we exclude the figures produced by
the MST because the extremely imbalanced distributions
of records in clusters shed little light on assigning machines
to orders.

One might question that these centers can simply be
shown in tables rather than in figures; however, taking
Standby Changeover_Time Breakdowns

11.8 2.87 5.34
24.01 2.87 10.69
17.82 0 9.53
7.75 0 1.96

18.22 0 6.69
Æ Æ Æ



Table 3
Attributes’ average values in clusters by using k-means on raw data

Attribute Cluster

1(n = 31) 2(n = 1) 3(n = 110) 4(n = 11) 5(n = 61) 6(n =151) 7(n = 1)

Prod_Qty 8857.645 49728 15452.88 37003.55 28426.93 21556.08 60819
Prod_Time 310.0497 801.09 552.5474 981.8627 815.8456 690.7896 1437.32
Small_Stops 473.5552 153.75 296.9441 189.6182 218.4433 261.5744 272.58
Standby 109.2758 112.24 130.9696 92.04182 112.6313 126.8417 151.85
Changeover_Time 33.84 23.55 33.96873 28.55545 25.39 28.62921 29.38
Breakdowns 50.77968 37.33 46.63536 26.55091 42.72361 48.27616 64.75

Table 4
Attributes’ mapped values in clusters by using k-means on raw data

Attribute Cluster

1(n = 31) 2(n = 1) 3(n = 110) 4(n = 11) 5(n = 61) 6(n = 151) 7(n = 1)

Prod_Qty 0.114572 0.811008 0.226955 0.594182 0.448035 0.330955 1
Prod_Time 0.182835 0.538793 0.358623 0.669836 0.54949 0.458836 1
Small_Stops 0.293295 0.079349 0.175144 0.103344 0.122628 0.151482 0.158845
Standby 0 .470092 0.483817 0.570541 0.390294 0.485629 0.551427 0.667222
Changeover_Time 0.364223 0.253471 0.365609 0.307345 0.273275 0.308139 0.31622
Breakdowns 0.124321 0.090071 0.113768 0.062622 0.103806 0.117946 0.159897
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Fig. 4. Centers of seven clusters by using k-means on raw data. (For
interpretation of the references to colour in this figure, the reader is
referred to the web version of this article.)
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Fig. 5. Centers of seven clusters by using k-means on data with z-score
normalization. (For interpretation of the references to colour in this figure,
the reader is referred to the web version of this article.)
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advantage of visual effects enables managers to make the
observations related to orders promptly and easily. First,
consider the attribute Prod_Qty that means the production
quantity of the machine. Comparing Figs. 4–6, we find that
the 11 machines in cluster 4 (in paleturquoise) in Fig. 4
seem to form a good family for orders that demand high
outputs. In this case, the average Prod_Qty of the 11
machines is 37003.55, which is nearly two times of that
of the total average, 20439.89. Their high average produc-
tion quantities justify their candidacy for orders of high
outputs. In Fig. 4, one might also notice that in terms of
Prod_Qty, cluster 4 is smaller than clusters 2 (in maroon)
and 7 (in blue) where both contain only one record. The
implication is that these two machines may also be consid-
ered but it is at the discretion of shop floor supervisors who
better understand whether the machines constitute ‘‘outli-
ers.’’ Second, for emergent time-based orders, the 54
machines in cluster 4 in Fig. 5 (or the 79 machines in cluster
4 in Fig. 6) can be considered. From Fig. 5 we observe
Small_Stops, Standby, Changeover_Time and Breakdowns
that largely affect an order’s completion time are relatively
low. In this case, the average Small_Stops is 100.34;
Standby is 32.06; Changeover_Time is 5.09; and Break-
downs is 9.05. Comparing to the averages of total records,
which are 280.54, 123.21, 30.12, 46.43, we suggest that the
machines in this cluster be more appropriate for emergent
orders. What deserves to be further investigated is whether
the low Prod_Qty (19486.02) can be increased so that high
output in short time can be simultaneously achieved.

We have remarked above that cluster 4, not only in
Fig. 5 but also in Fig. 6, is suitable for emergent orders.
After examining the raw data, we find that the 54 machines



Table 5
List of numbers of identical machines in clusters

Cluster Method

k-means with
z-score
normalization

k-means with
min–max
normalization

Number of
identical machines

1 11 26(2) 10
2 147 138(5) 109
3 11 7(1) 6
4 54 79 54
5 1 1(7) 1
6 88 80 67
7 54 35(3) 35
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Fig. 6. Centers of seven clusters by using k-means on data with min–max
normalization. (For interpretation of the references to colour in this figure,
the reader is referred to the web version of this article.)
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in both clusters actually are identical. This leads us to
investigate an interesting question of whether some
machines tend to be grouped together even different clus-
tering algorithms are used. Table 5 shows the numbers of
the same machines appearing in the clusters by using two
types of data normalizations, where the numbers in paren-
theses represent the cluster number using this type of nor-
malization. According to Table 5 we find that the degree of
duplicate machine is rather high. This high duplicate
should reinforce the foundry’s confidence in relying on
the clustering results to assign the machines to various
forms of orders. Moreover, we find that some serial num-
bers of machines in the same cluster follow close sequence.
Because the serial number of a machine is generally
assigned according to the year purchased, close sequence
of some machines frequently appearing in the same cluster
may reveal the information such as whether the year to
purchase machines affects the performance.

4. Conclusions

In this paper, we apply a two-phase methodology to
cluster 366 records of the wire bond machines for a Tai-
wanese IC packaging foundry, where six attributes of each
machine are chosen to cluster. The purpose of clustering in
this paper is to help the foundry assign machines more
effectively to orders that arrive in various types ranging
from time-based to quality-demanding and highly dynam-
ically in nature. Given the clusters obtained and taking
advantage of a visualization, we plot centers of clusters
using parallel coordinates that provide an easier outlook
for managers to assign. Because values of some attributes
are as large as thousands while some are only in tens, we
need to map these values into the range between �1 and
+1 so that proper parallel coordinates can be used to plot.
Despite the visual advantage founded on mapping values,
we need to point out that the drawback remains because
given the graphs we still need to find the original values
to know more about the details. However, this drawback
is less significant compared to the benefits resulting from
more effective management of machines. The last result
of the paper is that we present the numbers of identical
machines appearing in the same clusters when different
clustering methods are used. The implication is that the
clusters obtained are more robust as more identical
machines are present.
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